EM Algorithm
目录
Jensen’s inequality
convex function: /(f”(x) /ge 0/) or /(H /ge 0/) (Hessian matrix when x is a vector)
/[E[f(x)] /ge f(EX)
/]
EM Algorithm
EM can be proved that it make the likelihood function increase monotonically.
maximize the lower-bound on the likelihood /(/ell/), /(/log/) is a concave function. the process is
/[/theta_{t-1} /rightarrow^{assign} Q_{z,t-1} /rightarrow^{/arg/max} /theta_{t} /rightarrow Q_{z,t}
/]
define:
/[J(Q,/theta)=/sum_{i} /sum_{z^{(i)}}Q_i(z^{(i)})/log /frac{p(x^{(i)},z^{(i)};/theta)}{Q_i(z^{(i)})}
/]
the EM algorithm can also be defined as coordinate ascent on /(J/).
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/281728.html