There is a one-dimensional garden on the x-axis. The garden starts at the point 0
and ends at the point n
. (i.e The length of the garden is n
).
There are n + 1
taps located at points [0, 1, ..., n]
in the garden.
Given an integer n
and an integer array ranges
of length n + 1
where ranges[i]
(0-indexed) means the /(i/)-th tap can water the area [i - ranges[i], i + ranges[i]]
if it was open.
Return the minimum number of taps that should be open to water the whole garden, If the garden cannot be watered return -1
.
Solution
利用贪心的思想,我们先将区间 /([i-r[i], i+r[i]]/) /(push/_back/) 进去,然后进行 /(sort/). 主要思想就是我们固定左端点的时候,不断地去扩大右端点,然后以此时的右端点为左端点,再次求该时的最远右端点。
点击查看代码
class Solution {
private:
int ans=0;
vector<vector<int>> itv;
public:
int minTaps(int n, vector<int>& ranges) {
for(int i=0;i<n+1;i++){
itv.push_back({i-ranges[i], i+ranges[i]});
}
sort(itv.begin(), itv.end());
int st=0, ed=0;
int i=0;
while(st<n){
while(i<itv.size() && itv[i][0]<=st){
ed = max(ed, itv[i][1]); i++;
}
if(st==ed)return -1;
st = ed;
ans++;
}
return ans;
}
};
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/282119.html