建立一个文件夹用来返回图片预测的结果
import os dir_name = "images_uploaded" if not os.path.exists(dir_name): os.mkdir(dir_name)
接下来实现部署模型代码
import io import uvicorn import numpy as np import nest_asyncio from enum import Enum from fastapi import FastAPI, UploadFile, File, HTTPException from fastapi.responses import StreamingResponse import cv2 import cvlib as cv from cvlib.object_detection import draw_bbox # Assign an instance of the FastAPI class to the variable "app". # You will interact with your api using this instance. app = FastAPI(title=Deploying a ML Model with FastAPI: 终于成功了!!!) # List available models using Enum for convenience. This is useful when the options are pre-defined. class Model(str, Enum): yolov3tiny = "yolov3-tiny" yolov3 = "yolov3" # By using @app.get("/") you are allowing the GET method to work for the / endpoint. @app.get("/") def home(): return "Congratulations! Your API is working as expected. Now head over to http://localhost:8000/docs." # This endpoint handles all the logic necessary for the object detection to work. # It requires the desired model and the image in which to perform object detection. @app.post("/predict") def prediction(model: Model, file: UploadFile = File(...)): # 1. VALIDATE INPUT FILE filename = file.filename fileExtension = filename.split(".")[-1] in ("jpg", "jpeg", "png") if not fileExtension: raise HTTPException(status_code=415, detail="Unsupported file provided.") # 2. TRANSFORM RAW IMAGE INTO CV2 image # Read image as a stream of bytes image_stream = io.BytesIO(file.file.read()) # Start the stream from the beginning (position zero) image_stream.seek(0) # Write the stream of bytes into a numpy array file_bytes = np.asarray(bytearray(image_stream.read()), dtype=np.uint8) # Decode the numpy array as an image image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) # 3. RUN OBJECT DETECTION MODEL # Run object detection bbox, label, conf = cv.detect_common_objects(image, model=model) # Create image that includes bounding boxes and labels output_image = draw_bbox(image, bbox, label, conf) # Save it in a folder within the server cv2.imwrite(fimages_uploaded/{filename}, output_image) # 4. STREAM THE RESPONSE BACK TO THE CLIENT # Open the saved image for reading in binary mode file_image = open(fimages_uploaded/{filename}, mode="rb") # Return the image as a stream specifying media type return StreamingResponse(file_image, media_type="image/jpeg") # Allows the server to be run in this interactive environment nest_asyncio.apply() # Host depends on the setup you selected (docker or virtual env) host = "0.0.0.0" if os.getenv("DOCKER-SETUP") else "127.0.0.1" # Spin up the server! uvicorn.run(app, host=host, port=8000)
运行后可以看到:
点击链接得到:
再访问: http://localhost:8000/docs 如下图,并点击prediction
再点击Try it out
并且选择上传的图片,点击execute。 成功后在 images_uploaded文件夹可以得到结果。
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/291638.html