在Linux系统下安装elasticsearch(包括es集群)


Elasticsearch 简介

Elasticsearch 是一个非常强大的搜索引擎。它目前被广泛地使用于各个 IT 公司。Elasticsearch 是由 Elastic 公司创建。它的代码位于 GitHub – elastic/elasticsearch: Free and Open, Distributed, RESTful Search Engine。目前,Elasticsearch 是一个免费及开放(free and open)的项目。同时,Elastic 公司也拥有 Logstash 及 Kibana 开源项目。这个三个项目组合在一起,就形成了 ELK 软件栈。他们三个共同形成了一个强大的生态圈。简单地说,Logstash 负责数据的采集,处理(丰富数据,数据转换等),Kibana 负责数据展示,分析,管理,监督及应用。Elasticsearch 处于最核心的位置,它可以帮我们对数据进行快速地搜索及分析。

安装elasticsearch

1.部署单点es

1.1.创建网络

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net

1.2.加载镜像

这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。

然后将tar的压缩包上传到虚拟机中,然后运行命令加载即可:

# 导入数据
docker load -i es.tar

同理还有kibana的tar包也需要这样做。

1.3.运行

运行docker命令,部署单点es:

docker run -d 
	--name es 
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" 
    -e "discovery.type=single-node" 
    -v es-data:/usr/share/elasticsearch/data 
    -v es-plugins:/usr/share/elasticsearch/plugins 
    --privileged 
    --network es-net 
    -p 9200:9200 
    -p 9300:9300 
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称 -e "http.host=0.0.0.0":监听的地址,可以外网访问 -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小 -e "discovery.type=single-node":非集群模式 -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录 -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录 -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录 –privileged:授予逻辑卷访问权 –network es-net :加入一个名为es-net的网络中 -p 9200:9200:端口映射配置

在浏览器中输入:http://这里是自己的虚拟机ip地址:9200 即可看到elasticsearch的响应结果:

2.部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

2.1.部署

运行docker命令,部署kibana

docker run -d 
--name kibana 
-e ELASTICSEARCH_HOSTS=http://es:9200 
--network=es-net 
-p 5601:5601  
kibana:7.12.1
  • –network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中 -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

此时,在浏览器输入地址访问:http://这里是自己的虚拟机ip地址:5601,即可看到结果

2.2.DevTools

kibana中提供了一个DevTools界面: 这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

3.安装IK分词器

3.1.在线安装ik插件(较慢)

# 进入容器内部
docker exec -it elasticsearch /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart elasticsearch

3.2.离线安装ik插件(推荐)

1)查看数据卷目录

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[
    {
          
   
        "CreatedAt": "2022-05-06T10:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。

2)解压缩分词器安装包

下面我们需要把下载的ik分词器解压缩,然后创建一个新的文件夹命名为ik上传到es容器的插件数据卷中

3)上传到es容器的插件数据卷中

也就是/var/lib/docker/volumes/es-plugins/_data

4)重启容器

# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es

5)测试:

IK分词器包含两种模式:

  • ik_smart:最少切分 ik_max_word:最细切分
#测试分词器
GET /_analyze
{
          
   
  "analyzer": "ik_max_word",
  "text": "冰忆往昔的博文真是太棒了!"
}

结果:

{
          
   
  "tokens" : [
    {
          
   
      "token" : "冰",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "CN_CHAR",
      "position" : 0
    },
    {
          
   
      "token" : "忆往昔",
      "start_offset" : 1,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
          
   
      "token" : "往昔",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
          
   
      "token" : "的",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
          
   
      "token" : "博",
      "start_offset" : 5,
      "end_offset" : 6,
      "type" : "CN_CHAR",
      "position" : 4
    },
    {
          
   
      "token" : "文",
      "start_offset" : 6,
      "end_offset" : 7,
      "type" : "CN_CHAR",
      "position" : 5
    },
    {
          
   
      "token" : "真是太",
      "start_offset" : 7,
      "end_offset" : 10,
      "type" : "CN_WORD",
      "position" : 6
    },
    {
          
   
      "token" : "真是",
      "start_offset" : 7,
      "end_offset" : 9,
      "type" : "CN_WORD",
      "position" : 7
    },
    {
          
   
      "token" : "太棒了",
      "start_offset" : 9,
      "end_offset" : 12,
      "type" : "CN_WORD",
      "position" : 8
    },
    {
          
   
      "token" : "太棒",
      "start_offset" : 9,
      "end_offset" : 11,
      "type" : "CN_WORD",
      "position" : 9
    },
    {
          
   
      "token" : "了",
      "start_offset" : 11,
      "end_offset" : 12,
      "type" : "CN_CHAR",
      "position" : 10
    }
  ]
}

3.3 扩展词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“蚌埠住了” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>

3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

蚌埠住了
奥力给

4)重启elasticsearch

docker restart es

# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载ext.dic配置文件

5)测试效果:

#测试分词器
GET /_analyze
{
          
   
  "analyzer": "ik_max_word",
  "text": "冰忆往昔的博文真是太棒了!奥利给!!!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

3.4 停用词词典

在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。

IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典-->
        <entry key="ext_dict">ext.dic</entry>
         <!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典-->
        <entry key="ext_stopwords">stopword.dic</entry>
</properties>

3)在 stopword.dic 添加停用词

习习习

4)重启elasticsearch

# 重启服务
docker restart elasticsearch
docker restart kibana

# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载stopword.dic配置文件

5)测试效果:

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

4.部署es集群

部署es集群可以直接使用docker-compose来完成,不过要求你的Linux虚拟机至少有4G的内存空间

首先编写一个docker-compose文件,内容如下:

version: 2.2
services:
  es01:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data02:/usr/share/elasticsearch/data
    networks:
      - elastic
  es03:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic

volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

es运行需要修改一些linux系统权限,修改/etc/sysctl.conf文件

vi /etc/sysctl.conf

添加下面的内容:

vm.max_map_count=262144

然后执行命令,让配置生效:

sysctl -p

通过docker-compose启动集群 -d代表后台运行:

docker-compose up -d

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/291884.html

(0)
上一篇 2022年10月27日
下一篇 2022年10月27日

相关推荐

发表回复

登录后才能评论