python进阶(26)collections标准库


namedtuple

namedtuple的由来

因为元组的局限性:不能为元组内部的数据进行命名,所以往往我们并不知道一个元组所要表达的意义,所以引入namedtuple这个工厂函数,来构造一个带字段名的元组。namedtuple继承自tuple
命名元组赋予每个位置一个含义,提供可读性。它们可以用于任何普通元组,并添加了通过名字获取值的能力,通过索引值也是可以的。

namedtuple的格

highlighter- Python

collections.namedtuple(typename, field_names, *, rename=False, defaults=None, module=None)
  • typename: 返回一个新的元组子类,名为typename。这个新的子类用于创建类元组的对象,可以通过字段名来获取属性值,同样也可以通过索引和迭代获取值。
  • field_names: 像['x', 'y'] 一样的字符串序列。另外field_names可以是一个纯字符串,用空白或逗号分隔开元素名,比如 'x y' 或者 'x, y' 。
  • rename=False: 如果rename为true,无效字段名会自动转换成_+索引值,比如 ['abc', 'def', 'ghi', 'abc'] 转换成 ['abc', '_1', 'ghi', '_3'] , 消除关键词def和重复字段名abc。
  • default=None: defaults 可以为 None 或者是一个默认值的 iterable 。default默认值赋值跟我们平常的默认值相反,default默认值是从最右边开始,比如field_names中提供了3个字段['x', 'y', 'z'],default默认值设置为(1, 2),那么我们必须为x指定1个值,y默认值为1,z默认值为2
  • module=None: 如果 module 值有定义,命名元组的 module 属性值就被设置。
     

namedtuple声明以及实例化

我们首先创建一个User类,定义3个字段nameageheight,并给age设置默认值为18,给height设置了默认值18

python

User = namedtuple('User', ['name', 'age', 'height'], defaults=(18, 180))
print(User.__mro__)

我们查看结果


python

(<class '__main__.User'>, <class 'tuple'>, <class 'object'>)

可以看到我们声明的User类是继承于tuple,接下来我们创建实例

python

user1 = User(name='jkc')
user2 = User(name='jkc2', age=20, height=198)
print(user1)
print(user2)
print(user1.name)
print(user2.age)

运行结果为

python

User(name='jkc', age=18, height=180)
User(name='jkc2', age=20, height=198)
jkc
20

namedtuple的方法和属性

命名元组还支持三个额外的方法和两个属性。为了防止字段名冲突,方法和属性以下划线开始。
_make(iterable) 类方法从存在的序列或迭代实例创建一个新实例。

python

>>> t = ['jkc3', 25, 190]
>>> User._make(t)
User(name='jkc3', age=25, height=190)

_asdict() 返回一个新的 dict ,它将字段名称映射到它们对应的值

python

>>> user4 = User(name='jkc4', age=28, height=200)
>>> user4._asdict()
{'name': 'jkc4', 'age': 28, 'height': 200}

_replace(**kwargs) 返回一个新的命名元组实例,并将指定域替换为新的值

python

>>> user5 = User(name='jkc5', age=30, height=210)
>>> user5._replace(age=18)
User(name='jkc5', age=30, height=210)

_fields 字符串元组列出了字段名。用于提醒和从现有元组创建一个新的命名元组类型

python

>>> user5._fields        
('name', 'age', 'height')

_field_defaults 字典将字段名称映射到默认值。

python

>>> User._field_defaults
{'name': 'jkc', 'age': 18, 'height': 180}

转换一个字典到命名元组,使用 ** 两星操作符

python

>>> d = {'name': 'jkc6', 'age': 18, 'height': 180}
>>> User(**d)
User(name='jkc6', age=18, height=180)

OrderedDict

有序字典就像常规字典一样,但有一些与排序操作相关的额外功能。由于内置的 dict 类获得了记住插入顺序的能力(在 Python 3.7 中保证了这种新行为),它们变得不那么重要了。

与dict类的区别

  • 常规的 dict 被设计为非常擅长映射操作。 跟踪插入顺序是次要的
  • OrderedDict 擅长重新排序操作。 空间效率、迭代速度和更新操作的性能是次要的。
  • 算法上, OrderedDict 可以比 dict 更好地处理频繁的重新排序操作。 这使其适用于跟踪最近的访问(例如在 LRU cache 中)。
  • 对于 OrderedDict ,相等操作检查匹配顺序。
  • OrderedDict 类的popitem() 方法有不同的签名。它接受一个可选参数来指定弹出哪个元素。
  • OrderedDict 类有一个 move_to_end() 方法,可以有效地将元素移动到任一端。
  • Python 3.8之前, dict 缺少 __reversed__() 方法。

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/292737.html

(0)
上一篇 2022年11月8日
下一篇 2022年11月8日

相关推荐

发表回复

登录后才能评论