MongoDB 本身提供了Auto-Sharding的功能,这个智能的功能作为 MongoDB 的最具卖点的特性之一,真的非常靠谱吗(图 3)?也许理想是丰满的,现实是骨干滴。
首先是在 Sharding Key 选择上,如果选择了单一的 Sharding Key,会造成分片不均衡,一些分片数据比较多,一些分片数据较少,无法充分利用每个分片集群的能力。为了弥补单一 Sharding Key 的缺点,引入复合 Sharing Key,然而复合 Sharding Key 会造成性能的消耗;
第二count 值计算不准确的问题,数据 Chunk 在分片之间迁移时,特定数据可能会被计算 2 次,造成 count 值计算偏大的问题;
第三Balancer 的稳定性 & 智能性问题,Sharing 的迁移发生时间不确定,一旦发生数据迁移会造成整个系统的吞吐量急剧下降。为了应对 Sharding 迁移的不确定性,我们可以强制指定 Sharding 迁移的时间点,具体迁移时间点依据业务访问的低峰期。比如 IM 系统,我们的流量低峰期是在凌晨 1 点到 6 点,那么我们可以在这段时间内开启 Sharding 迁移功能,允许数据的迁移,其他的时间不进行数据的迁移,从而做到对 Sharding 迁移的完全掌控,避免掉未知时间 Sharding 迁移带来的一些风险。
如何设计库(DataBase)?
我们的 MongoDB 集群线上环境全部禁用了 Auto-Sharding 功能。如上节所示,仅仅提供了指定时间段的数据迁移功能。线上的数据我们开启了库级的分片,通过 db.runCommand({“enablesharding”: “im”}); 命令指定。并且我们通过 db.runCommand({movePrimary:“im”, to: “sharding1”}); 命令指定特定库到某一固定分片上。通过这样的方式,我们保证了数据的无迁移性,避免了 Auto-Sharding 带来的一系列问题,数据完全可控,从实际使用情况来看,效果也较好。
既然我们关闭了 Auto-Sharding 的功能,就要求对业务的数据增加情况提前做好预估,详细了解业务半年甚至一年后的数据增长情况,在设计 MongoDB 库时需要做好规划:确定数据规模、确定数据库分片数量等,避免数据库频繁的重构和迁移情况发生。
那么问题来了,针对 MongoDB,我们如何做好容量规划?
MongoDB 集群高性能本质是 MMAP 机制,对机器内存的依赖较重,因此我们要求业务热点数据和索引的总量要能全部放入内存中,即:Memory > Index + Hot Data。一旦数据频繁地 Swap,必然会造成 MongoDB 集群性能的下降。当内存成为瓶颈时,我们可以通过 Scale Up 或者 Scale Out 的方式进行扩展。
第二:我们知道 MongoDB 的数据库是按文件来存储的:例如:db1 下的所有 collection 都放在一组文件内 db1.0,db1.1,db1.2,db1.3……db1.n。数据的回收也是以库为单位进行的,数据的删除将会造成数据的空洞或者碎片,碎片太多,会造成数据库空间占用较大,加载到内存时也会存在碎片的问题,内存使用率不高,会造成数据频繁地在内存和磁盘之间 Swap,影响 MongoDB 集群性能。因此将频繁更新删除的表放在一个独立的数据库下,将会减少碎片,从而提高性能。
第三:单库单表绝对不是最好的选择。原因有三:表越多,映射文件越多,从 MongoDB 的内存管理方式来看,浪费越多;同理,表越多,回写和读取的时候,无法合并 IO 资源,大量的随机 IO 对传统硬盘是致命的;单表数据量大,索引占用高,更新和读取速度慢。
第四:Local 库容量设置。我们知道 Local 库主要存放 oplog,oplog 用于数据的同步和复制,oplog 同样要消耗内存的,因此选择一个合适的 oplog 值很重要,如果是高插入高更新,并带有延时从库的副本集需要一个较大的 oplog 值(比如 50G);如果没有延时从库,并且数据更新速度不频繁,则可以适当调小 oplog 值(比如 5G)。总之,oplog 值大小的设置取决于具体业务应用场景,一切脱离业务使用场景来设置 oplog 的值大小都是耍流氓。
如何设计表(Collection)?
MongoDB 在数据逻辑结构上和 RDBMS 比较类似,如图 4 所示:MongoDB 三要素:数据库(DataBase)、集合(Collection)、文档(Document)分别对应 RDBMS(比如 MySQL)三要素:数据库(DataBase)、表(Table)、行(Row)。
图 4 MongoDB 和 RDBMS 数据逻辑结构对比
MongoDB 作为一支文档型的数据库允许文档的嵌套结构,和 RDBMS 的三范式结构不同,我们以“人”描述为例,说明两者之间设计上的区别。“人”有以下的属性:姓名、性别、年龄和住址;住址是一个复合结构,包括:国家、城市、街道等。针对“人”的结构,传统的 RDBMS 的设计我们需要 2 张表:一张为 People 表 [图 5],另外一张为 Address 表 [图 6]。这两张表通过住址 ID 关联起来(即 Addess ID 是 People 表的外键)。在 MongoDB 表设计中,由于 MongoDB 支持文档嵌套结构,我可以把住址复合结构嵌套起来,从而实现一个 Collection 结构 [图 7],可读性会更强。
图 5 RDBMSPeople 表设计
图 6 RDBMS Address 表设计
图 7 MongoDB 表设计
MongoDB 作为一支 NoSQL 数据库产品,除了可以支持嵌套结构外,它又是最像 RDBMS 的产品,因此也可以支持“关系”的存储。接下来会详细讲述下对应 RDBMS 中的一对一、一对多、多对多关系在 MongoDB 中我们设计和实现。
IM 用户信息表,包含用户 uid、用户登录名、用户昵称、用户签名等,是一个典型的一对一关系,在 MongoDB 可以采用类 RDBMS 的设计,我们设计一张 IM 用户信息表 user:{_id:88, loginname:musicml, nickname:musicml,sign:love},其中 _id 为主键,_id 实际为 uid。IM 用户消息表,一个用户可以收到来自他人的多条消息,一个典型的一对多关系。
我们如何设计?
一种方案,采用 RDBMS 的“多行”式设计,msg 表结构为:{uid,msgid,msg_content},具体的记录为:123, 1, 你好;123,2,在吗。
另外一种设计方案,我们可以使用 MongoDB 的嵌套结构:{uid:123, msg:{[{msgid:1,msg_content: 你好},{msgid:2, msg_content: 在吗}]}}。
采用 MongoDB 嵌套结构,会更加直观,但也存在一定的问题:更新复杂、MongoDB 单文档 16MB 的限制问题。采用 RDBMS 的“多行”设计,它遵循了范式,一方面查询条件更灵活,另外通过“多行式”扩展性也较高。
在这个一对多的场景下,由于 MongoDB 单条文档大小的限制,我们并没采用 MongoDB 的嵌套结构,而是采用了更加灵活的类 RDBMS 的设计。
在 User 和 Team 业务场景下,一个 Team 中有多个 User,一个 User 也可能属于多个 Team,这种是典型的多对多关系。
在 MongoDB 中我们如何设计?一种方案我们可以采用类 RDBMS 的设计。一共三张表:Team 表{teamid,teamname, ……},User 表{userid,username,……},Relation 表{refid, userid, teamid}。其中 Team 表存储 Team 本身的元信息,User 表存储 User 本身的元信息,Relation 表存储 Team 和 User 的所属关系。
在 MongoDB 中我们可以采用嵌套的设计方案:一种 2 张表:Team 表{teamid,teamname,teammates:{[userid, userid, ……]},存储了 Team 所有的 User 成员和 User 表{useid,usename,teams:{[teamid, teamid,……]}},存储了 User 所有参加的 Team。
在 MongoDB Collection 上我们并没有开启 Auto-Shariding 的功能,那么当单 Collection 数据量变大后,我们如何 Sharding?对 Collection Sharding 我们采用手动水平 Sharding 的方式,单表我们保持在千万级别文档数量。当 Collection 数据变大,我们进行水平拆分。比如 IM 用户信息表:{uid, loginname, sign, ……},可用采用 uid 取模的方式水平扩展,比如:uid%64,根据 uid 查询可以直接定位特定的 Collection,不用跨表查询。
通过手动 Sharding 的方式,一方面根据业务的特点,我们可以很好满足业务发展的情况,另外一方面我们可以做到可控、数据的可靠,从而避免了 Auto-Sharding 带来的不稳定因素。对于 Collection 上只有一个查询维度(uid),通过水平切分可以很好满足。
但是对于 Collection 上有 2 个查询维度,我们如何处理?比如商品表:{uid, infoid, info,……},存储了商品发布者,商品 ID,商品信息等。我们需要即按照 infoid 查询,又能支持按照 uid 查询。为了支持这样的查询需求,就要求 infoid 的设计上要特殊处理:infoid 包含 uid 的信息(infoid 最后 8 个 bit 是 uid 的最后 8 个 bit),那么继续采用 infoid 取模的方式,比如:infoid%64,这样我们既可以按照 infoid 查询,又可以按照 uid 查询,都不需要跨 Collection 查询。
数据量、并发量增大,遇到问题及其解决方案
大量删除数据问题及其解决方案
我们在 IM 离线消息中使用了 MongoDB,IM 离线消息是为了当接收方不在线时,需要把发给接收者的消息存储下来,当接收者登录 IM 后,读取存储的离线消息后,这些离线消息不再需要。已读取离线消息的删除,设计之初我们考虑物理删除带来的性能损耗,选择了逻辑标识删除。IM 离线消息 Collection 包含如下字段:msgid, fromuid, touid, msgcontent, timestamp, flag。其中 touid 为索引,flag 表示离线消息是否已读取,0 未读,1 读取。
当 IM 离线消息已读条数积累到一定数量后,我们需要进行物理删除,以节省存储空间,减少 Collection 文档条数,提升集群性能。既然我们通过 flag==1 做了已读取消息的标示,第一时间想到了通过 flag 标示位来删除:db.collection.remove({“flag” :1}}; 一条简单的命令就可以搞定。表面上看很容易就搞定了?!实际情况是 IM 离线消息表 5kw 条记录,近 200GB 的数据大小。
悲剧发生了:晚上 10 点后部署删除直到早上 7 点还没删除完毕;MongoDB 集群和业务监控断续有报警;从库延迟大;QPS/TPS 很低;业务无法响应。事后分析原因:虽然删除命令 db.collection.remove({“flag” : 1}}; 很简单,但是 flag 字段并不是索引字段,删除操作等价于全部扫描后进行,删除速度很慢,需要删除的消息基本都是冷数据,大量的冷数据进入内存中,由于内存容量的限制,会把内存中的热数据 swap 到磁盘上,造成内存中全是冷数据,服务能力急剧下降。
遇到问题不可怕,我们如何解决呢?首先我们要保证线上提供稳定的服务,采取紧急方案,找到还在执行的 opid,先把此命令杀掉(kill opid),恢复服务。长期方案,我们首先优化了离线删除程序 [图 8],把已读 IM 离线消息的删除操作,每晚定时从库导出要删除的数据,通过脚本按照 objectid 主键(_id)的方式进行删除,并且删除速度通过程序控制,从避免对线上服务影响。其次,我们通过用户的离线消息的读取行为来分析,用户读取离线消息时间分布相对比较均衡,不会出现比较密度读取的情形,也就不会对 MongoDB 的更新带来太大的影响,基于此我们把用户 IM 离线消息的删除由逻辑删除优化成物理删除,从而从根本上解决了历史数据的删除问题。
图 8 离线删除优化脚本
大量数据空洞问题及其解决方案
MongoDB 集群大量删除数据后(比如上节中的 IM 用户离线消息删除)会存在大量的空洞,这些空洞一方面会造成 MongoDB 数据存储空间较大,另外一方面这些空洞数据也会随之加载到内存中,导致内存的有效利用率较低,在机器内存容量有限的前提下,会造成热点数据频繁的 Swap,频繁 Swap 数据,最终使得 MongoDB 集群服务能力下降,无法提供较高的性能。
通过上文的描述,大家已经了解 MongoDB 数据空间的分配是以 DB 为单位,而不是以 Collection 为单位的,存在大量空洞造成 MongoDB 性能低下的原因,问题的关键是大量碎片无法利用,因此通过碎片整理、空洞合并收缩等方案,我们可以提高 MongoDB 集群的服务能力。
那么我们如何落地呢?
方案一:我们可以使用 MongoDB 提供的在线数据收缩的功能,通过 Compact 命令(db.yourCollection.runCommand(“compact”);)进行 Collection 级别的数据收缩,去除 Collectoin 所在文件碎片。此命令是以 Online 的方式提供收缩,收缩的同时会影响到线上的服务,其次从我们实际收缩的效果来看,数据空洞收缩的效果不够显著。因此我们在实际数据碎片收缩时没有采用这种方案,也不推荐大家使用这种空洞数据的收缩方案。
既然这种数据方案不够好,我们可以采用 Offline 收缩的方案二:此方案收缩的原理是:把已有的空洞数据,remove 掉,重新生成一份无空洞数据。那么具体如何落地?先预热从库;把预热的从库提升为主库;把之前主库的数据全部删除;重新同步;同步完成后,预热此库;把此库提升为主库。
具体的操作步骤如下:检查服务器各节点是否正常运行 (ps -ef |grep mongod);登入要处理的主节点 /mongodb/bin/mongo–port 88888;做降权处理 rs.stepDown(),并通过命令 rs.status() 来查看是否降权;切换成功之后,停掉该节点;检查是否已经降权,可以通过 web 页面查看 status,我们建议最好登录进去保证有数据进入,或者是 mongostat 查看; kill 掉对应 mongo 的进程: kill 进程号;删除数据,进入对应的分片删除数据文件,比如: rm -fr /mongodb/shard11/*;重新启动该节点,执行重启命令,比如:如:/mongodb/bin/mongod –config /mongodb/shard11.conf;通过日志查看进程;数据同步完成后,在修改后的主节点上执行命令 rs.stepDown() ,做降权处理。
通过这种 Offline 的收缩方式,我们可以做到收缩率是 100%,数据完全无碎片。当然做离线的数据收缩会带来运维成本的增加,并且在 Replic-Set 集群只有 2 个副本的情况下,还会存在一段时间内的单点风险。通过 Offline 的数据收缩后,收缩前后效果非常明显,如 [图 9, 图 10] 所示:收缩前 85G 存储文件,收缩后 34G 存储文件,节省了 51G 存储空间,大大提升了性能。
图 9 收缩 MongoDB 数据库前存储数据大小
图 10 收缩 MongoDB 数据库后存储数据大小
MongoDB 集群监控
MongoDB 集群有多种方式可以监控:mongosniff、mongostat、mongotop、db.xxoostatus、web 控制台监控、MMS、第三方监控。我们使用了多种监控相结合的方式,从而做到对 MongoDB 整个集群完全 Hold 住。
第一是 mongostat[图 11],mongostat 是对 MongoDB 集群负载情况的一个快照,可以查看每秒更新量、加锁时间占操作时间百分比、缺页中断数量、索引 miss 的数量、客户端查询排队长度(读|写)、当前连接数、活跃客户端数量 (读|写) 等。
图 11 MongoDB mongostat 监控
mongstat 可以查看的字段较多,我们重点关注 Locked、faults、miss、qr|qw 等,这些值越小越好,最好都为 0;locked 最好不要超过 10%;造成 faults、miss 原因主要是内存不够或者内冷数据频繁 Swap,索引设置不合理;qr|qw 堆积较多,反应了数据库处理慢,这时候我们需要针对性的优化。
第二是 web 控制台,和 MongoDB 服务一同开启,它的监听端口是 MongoDB 服务监听端口加上 1000,如果 MongoDB 的监听端口 33333,则 Web 控制台端口为 34333。我们可以通过 http://ip:port( http://8.8.8.8:34333 )访问监控了什么 [图 12]:当前 MongoDB 所有的连接数、各个数据库和 Collection 的访问统计包括:Reads, Writes, Queries 等、写锁的状态、最新的几百行日志文件。
图 12 MongoDB Web 控制台监控
第三是 MMS(MongoDBMonitoring Service),它是 2011 年官方发布的云监控服务,提供可视化图形监控。工作原理如下:在 MMS 服务器上配置需要监控的 MongoDB 信息(ip/port/user/passwd 等);在一台能够访问你 MongoDB 服务的内网机器上运行其提供的 Agent 脚本;Agent 脚本从 MMS 服务器获取到你配置的 MongoDB 信息;Agent 脚本连接到相应的 MongoDB 获取必要的监控数据;Agent 脚本将监控数据上传到 MMS 的服务器;登录 MMS 网站查看整理过后的监控数据图表。具体的安装部署,可以参考: http://mms.10gen.com 。
图 13 MongoDB MMS 监控
第四是第三方监控,MongoDB 开源爱好者和团队支持者较多,可以在常用监控框架上扩展,比如:zabbix,可以监控 CPU 负荷、内存使用、磁盘使用、网络状况、端口监视、日志监视等;nagios,可以监控监控网络服务(HTTP 等)、监控主机资源(处理器负荷、磁盘利用率等)、插件扩展、报警发送给联系人(EMail、短信、用户定义方式)、手机查看方式;cacti,可以基于 PHP,MySQL,SNMP 及 RRDTool 开发的网络流量监测图形分析工具。
原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/310038.html