弗洛伊德基本思想
弗洛伊德算法作为求最短路径的经典算法,其算法实现相比迪杰斯特拉等算法是非常优雅的,可读性和理解都非常好。
基本思想:
弗洛伊德算法定义了两个二维矩阵:
- 矩阵D记录顶点间的最小路径
例如D[0][3]= 10,说明顶点0 到 3 的最短路径为10;- 矩阵P记录顶点间最小路径中的中转点
例如P[0][3]= 1 说明,0 到 3的最短路径轨迹为:0 -> 1 -> 3。它通过3重循环,k为中转点,v为起点,w为终点,循环比较D[v][w] 和 D[v][k] + D[k][w] 最小值,如果D[v][k] + D[k][w] 为更小值,则把D[v][k] + D[k][w] 覆盖保存在D[v][w]中。
概念是比较难理解的,我们来看图:
顶点名称和下标的对应
A B C D E F G
0 1 2 3 4 5 6
第2步:
以A为中间点,原D矩阵中,D[B][G]的值为INF,即不存在B->G的最小路径,但是通过A为中间点,D[B][A] + D[A][G] = 12 + 14 = 26 小于 D[B][G] = INF, 所以D[B][A] + D[A][G] 为 B -> G的最小值,因此覆盖D[B][G] 为 26。
第3步:
以B为中间点,第2步后的D矩阵中,D[A][C]的值为INF, 但是通过B,D[A][B] + D[B][C] = 12 + 10 = 22 小于 D[A][C] = INF,所以D[A][B] + D[B][C] 为 A->C的最小路径,覆盖D[A][C]的值为22, 以此类推。
第4步….
代码实现
我们就对上面的图进行弗洛伊德算法求最短路径,并且我们求A到D的最小路径,即v = 0, w = 3;
结构定义
typedef struct struct_graph{
char vexs[MAXN];
int vexnum;//顶点数
int edgnum;//边数
int matirx[MAXN][MAXN];//邻接矩阵
} Graph;
弗洛伊德算法
//这里是弗洛伊德算法的核心部分
//k为中间点
for(k = 0; k < G.vexnum; k++){
//v为起点
for(v = 0 ; v < G.vexnum; v++){
//w为终点
for(w =0; w < G.vexnum; w++){
if(D[v][w] > (D[v][k] + D[k][w])){
D[v][w] = D[v][k] + D[k][w];//更新最小路径
P[v][w] = P[v][k];//更新最小路径中间顶点
}
}
}
}
求A 到 D的最短路径
v = 0;
w = 3;
//求 0 到 3的最小路径
printf("/n%d -> %d 的最小路径为:%d/n", v, w, D[v][w]);
k = P[v][w];
printf("path: %d", v);//打印起点
while(k != w){
printf("-> %d", k);//打印中间点
k = P[k][w];
}
printf("-> %d/n", w);
完整代码
#include <stdio.h>
#include <stdlib.h>
#define MAXN 10
#define INF = 1000
typedef struct struct_graph{
char vexs[MAXN];
int vexnum;//顶点数
int edgnum;//边数
int matirx[MAXN][MAXN];//邻接矩阵
} Graph;
int pathmatirx[MAXN][MAXN];//记录对应点的最小路径的前驱点,例如p(1,3) = 2 说明顶点1到顶点3的最小路径要经过2
int shortPath[MAXN][MAXN];//记录顶点间的最小路径值
void short_path_floyd(Graph G, int P[MAXN][MAXN], int D[MAXN][MAXN]){
int v, w, k;
//初始化floyd算法的两个矩阵
for(v = 0; v < G.vexnum; v++){
for(w = 0; w < G.vexnum; w++){
D[v][w] = G.matirx[v][w];
P[v][w] = w;
}
}
//这里是弗洛伊德算法的核心部分
//k为中间点
for(k = 0; k < G.vexnum; k++){
//v为起点
for(v = 0 ; v < G.vexnum; v++){
//w为终点
for(w =0; w < G.vexnum; w++){
if(D[v][w] > (D[v][k] + D[k][w])){
D[v][w] = D[v][k] + D[k][w];//更新最小路径
P[v][w] = P[v][k];//更新最小路径中间顶点
}
}
}
}
printf("/n初始化的D矩阵/n");
for(v = 0; v < G.vexnum; v++){
for(w = 0; w < G.vexnum; w++){
printf("%d ", D[v][w]);
}
printf("/n");
}
printf("/n初始化的P矩阵/n");
for(v = 0; v < G.vexnum; v++){
for(w = 0; w < G.vexnum; w++){
printf("%d", P[v][w]);
}
printf("/n");
}
v = 0;
w = 3;
//求 0 到 3的最小路径
printf("/n%d -> %d 的最小路径为:%d/n", v, w, D[v][w]);
k = P[v][w];
printf("path: %d", v);//打印起点
while(k != w){
printf("-> %d", k);//打印中间点
k = P[k][w];
}
printf("-> %d/n", w);
}
int main(){
int v, w;
Graph G;
printf("请输入顶点数:/n");
scanf("%d", &G.vexnum);
printf("请输入初始矩阵值:/n");
for(v = 0; v < G.vexnum; v++){
for(w = 0; w < G.vexnum; w++){
scanf("%d", &G.matirx[v][w]);
}
}
printf("/n输入的矩阵值:/n");
for(v = 0; v < G.vexnum; v++){
for(w = 0; w < G.vexnum; w++){
printf("%d ", G.matirx[v][w]);
}
printf("/n");
}
short_path_floyd(G, pathmatirx, shortPath);
}
操作结果
初始化操作
弗洛伊德算法后的D矩阵和P矩阵
求得的最短路径
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/7801.html