受八目鳗启发,AgnathaX是由瑞士洛桑联邦理工学院(EPFL)、日本东北大学、法国Mines-Télécom Atlantique研究所和加拿大谢布克大学的科学家合作开发的。它的设计是为了探索动物的中枢和周围神经系统对运动的贡献方式。
过去,一些科学家推测中枢神经系统(大脑和脊髓)应负主要责任,因为它产生的信号可以有节奏地移动动物的腿、鳍或翅膀。然而,其他人则认为,周围神经系统(连接身体四肢和大脑的神经)发挥了更大的作用,因为运动的四肢中的神经产生了反馈信号,使节奏持续。
事实上,两个神经系统对运动都很重要,AgnathaX已经帮助证明了这一点。该铰接式机器人由10个相连的部分组成,每个部分都包含一个马达,扮演着真正的八目鳗肌肉的角色。一个板载的微处理器作为中枢神经系统,依次激活马达,以产生起伏的游泳运动。位于每个节段两侧的力传感器模拟外围神经系统,通过感知水在节段上移动时的压力大小。在真正的八目鳗中,皮肤中的压力敏感细胞也起到同样的作用。
当利用运动跟踪系统分析机器人在水池中游泳的动作时,研究人员发现,当两个神经系统一起工作时,机器人的表现最好。也就是说,当科学家们切断了一些节段之间的通信(模拟脊髓病变),力传感器提供的反馈仍然足以维持整体的游泳运动模式。当这些传感器被禁用时,机器人也能够保持游泳,完全依靠其“大脑”产生的节奏。
该研究论文的共同作者、EPFL的卡米洛-梅洛博士说:“通过利用中央和外围组件的组合,机器人可以抵御更多的神经干扰,并保持高速游泳,而不是只用一种组件的机器人。我们还发现,机器人皮肤中的力传感器,以及机器人身体和水的物理相互作用,为产生和同步运动所需的有节奏的肌肉活动提供了有用的信号。”
现在,人们希望该团队的发现能够导致更强大的机器人–用于搜索和救援或环境监测等应用–甚至改进对人类脊髓损伤的治疗。
这篇论文最近发表在《科学机器人》杂志上。
访问:
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/87205.html