比赛链接
Codeforces Round #697 (Div. 3)
G. Strange Beauty
题目大意: 有 /(n/) 个数,从中挑选一个最大的子集,使得集合中任意两个不同的数 /(x, y/) ,有 /(x /mid y/) 或 /(y /mid x/)
输入格式
The first line contains one integer /(t(1 /leq t /leq 10)/) – the number of test cases. Then /(t/) test cases follow.
The first line of each test case contains one integer /(n/left(1 /leq n /leq 2 /cdot 10^{5}/right)-/) the length of the array /(a/)
The second line of each test case contains /(n/) numbers /(a_{1}, a_{2}, /ldots, a_{n}/left(1 /leq a_{i} /leq 2 /cdot 10^{5}/right)-/) elements of the array /(a/).
输出格式
For each test case output one integer – the minimum number of elements that must be removed to make the array /(a/) beautiful.
解题思路
dp
不难发现,值域较小,可将所有出现的值作为桶,统计每个数出现的次数
-
状态表示:/(f[i]/) 表示最大值为 /(i/) 的满足条件的最长上升子序列的长度
-
状态计算:/(f[i]+=a[i]/)
分析:值 /(i/) 作为最大值时,应加上值为 /(i/) 出现的次数,注意这里不是 /(f[i]=a[i]/),因为前面可能会有 /(i/) 的约数也作为最长长度的贡献 -
时间复杂度:/(O(nlogn)/)
代码
// Problem: G. Strange Beauty
// Contest: Codeforces - Codeforces Round #697 (Div. 3)
// URL: https://codeforces.com/contest/1475/problem/G
// Memory Limit: 256 MB
// Time Limit: 5000 ms
//
// Powered by CP Editor (https://cpeditor.org)
// %%%Skyqwq
#include <bits/stdc++.h>
//#define int long long
#define help {cin.tie(NULL); cout.tie(NULL);}
#define pb push_back
#define fi first
#define se second
#define mkp make_pair
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
template <typename T> bool chkMax(T &x, T y) { return (y > x) ? x = y, 1 : 0; }
template <typename T> bool chkMin(T &x, T y) { return (y < x) ? x = y, 1 : 0; }
template <typename T> void inline read(T &x) {
int f = 1; x = 0; char s = getchar();
while (s < '0' || s > '9') { if (s == '-') f = -1; s = getchar(); }
while (s <= '9' && s >= '0') x = x * 10 + (s ^ 48), s = getchar();
x *= f;
}
const int N=2e5+5;
int t,n,f[N],a[N];
int main()
{
for(cin>>t;t;t--)
{
cin>>n;
memset(f,0,sizeof f);
memset(a,0,sizeof a);
for(int i=1;i<=n;i++)
{
int x;
cin>>x;
a[x]++;
}
int res=0;
for(int i=1;i<N;i++)
{
f[i]+=a[i];
res=max(res,f[i]);
for(int j=i;j<N;j+=i)f[j]=max(f[j],f[i]);
}
cout<<n-res<<'/n';
}
return 0;
}
原创文章,作者:bd101bd101,如若转载,请注明出处:https://blog.ytso.com/tech/pnotes/270276.html