python基础6之迭代器&生成器、json&pickle数据序列化详解编程语言

内容概要:

一、生成器

二、迭代器

三、json&pickle数据序列化

 

一、生成器generator

在学习生成器之前我们先了解下列表生成式,现在生产一个这样的列表[0,2,4,6,8,10],当然有很多方法,下面的方法就叫列表生成式。

>>> [ i*2 for i in range(6) ] 
[0, 2, 4, 6, 8, 10]

当然还有其他方法:

python基础6之迭代器&生成器、json&pickle数据序列化详解编程语言

>>> a=map(lambda x:x*2,range(6)) 
>>> for i in a: 
...     print(i) 
... 
0 
2 
4 
6 
8 
10

lambbda版本

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator。

>>> ( i*2 for i in range(6) ) 
<generator object <genexpr> at 0x000000000106B360>

当我们把列表生成式变成了生产器,它会有__next__()方法(在2.7中是next()),此时我们每调用一次,就会生成一次数据:

>>> a=( i*2 for i in range(6) ) 
>>> a.__next__() 
0 
>>> a.__next__() 
2 
>>> a.__next__() 
4 
>>> a.__next__() 
6 
>>>

普通的生成器

定义:如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator

yield作用:使函数状态停留在yield关键字执行完之后的状态,并返回当前的迭代值,当我们使用next方法的时候,会重新唤醒该函数,并从之前保留的状态继续执行下去yield下面的代码;

后续还提到send方法,作用是给yield发送返回数据,让我们来看看普通生成器。

def gen(): 
    a=1 
    while a<10: 
        res=yield a 
        print(res) 
        a+=1 
a=gen() 
print(a.__next__())#调用next方法唤醒函数 
print("分割线====") 
print(a.__next__()) 
a.send("拿去")#向yield发送返回值 
print(a.__next__()) 
结果: 
1 
分割线==== 
None 
2 
拿去 
None 
4

 通常我们在使用的生成器的时候并不使用next的方法,而是使用for循环取得返回值(tips:当生成器执行到最后时候使用next方法会抛出StopIteration异常,而for循环不会。);

python基础6之迭代器&生成器、json&pickle数据序列化详解编程语言

def gen(): 
    a=1 
    while a<10: 
        yield a 
        a+=1 
for i in gen(): 
    print(i) 
结果: 
1 
2 
3 
4 
5 
6 
7 
8 
9

 

二、迭代器

概念:

可迭代对象(Iterable)):可以被for循环的对象或者数据类型叫做可迭代对象,所以像list、tuple、dict、set、str、generator都是可迭代对象,这些可迭代对象可以通过iter()方法成为迭代器;

迭代器:可以被next()函数调用并不断返回下一个值的对象称为迭代器,生成器是迭代器,但迭代器不一定是生成器;

可以使用isinstance()判断一个对象是否是Iterator对象

>>> from collections import Iterator,Iterable 
>>> isinstance([],Iterator)#不是迭代器返回false 
False 
>>> isinstance([],Iterable)#可迭代对象返回True 
True 
>>> isinstance((i*2 for i in range(6)),Iterator)#是迭代器 
True 
>>> isinstance((i*2 for i in range(6)),Iterable) 
True

 

原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/12463.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论