大数据技术之流量汇总案例详解大数据

7.2 流量汇总程序案例

7.2.1 需求1:统计手机号耗费的总上行流量、下行流量、总流量(序列化)

1)需求: 统计每一个手机号耗费的总上行流量、下行流量、总流量

2)数据准备 phone_date.txt

    13726230503    00-FD-07-A4-72-B8:CMCC    120.196.100.82    i02.c.aliimg.com        24    27    2481    24681    200 
13826544101    5C-0E-8B-C7-F1-E0:CMCC    120.197.40.4            4    0    264    0    200 
13926435656    20-10-7A-28-CC-0A:CMCC    120.196.100.99            2    4    132    1512    200 
13926251106    5C-0E-8B-8B-B1-50:CMCC    120.197.40.4            4    0    240    0    200 
18211575961    94-71-AC-CD-E6-18:CMCC-EASY    120.196.100.99    iface.qiyi.com    视频网站    15    12    1527    2106    200 
84138413    5C-0E-8B-8C-E8-20:7DaysInn    120.197.40.4    122.72.52.12        20    16    4116    1432    200 
13560439658    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            18    15    1116    954    200 
15920133257    5C-0E-8B-C7-BA-20:CMCC    120.197.40.4    sug.so.360.cn    信息安全    20    20    3156    2936    200 
13719199419    68-A1-B7-03-07-B1:CMCC-EASY    120.196.100.82            4    0    240    0    200 
13660577991    5C-0E-8B-92-5C-20:CMCC-EASY    120.197.40.4    s19.cnzz.com    站点统计    24    9    6960    690    200 
15013685858    5C-0E-8B-C7-F7-90:CMCC    120.197.40.4    rank.ie.sogou.com    搜索引擎    28    27    3659    3538    200 
15989002119    E8-99-C4-4E-93-E0:CMCC-EASY    120.196.100.99    www.umeng.com    站点统计    3    3    1938    180    200 
13560439658    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            15    9    918    4938    200 
13480253104    5C-0E-8B-C7-FC-80:CMCC-EASY    120.197.40.4            3    3    180    180    200 
13602846565    5C-0E-8B-8B-B6-00:CMCC    120.197.40.4    2052.flash2-http.qq.com    综合门户    15    12    1938    2910    200 
13922314466    00-FD-07-A2-EC-BA:CMCC    120.196.100.82    img.qfc.cn        12    12    3008    3720    200 
13502468823    5C-0A-5B-6A-0B-D4:CMCC-EASY    120.196.100.99    y0.ifengimg.com    综合门户    57    102    7335    110349    200 
18320173382    84-25-DB-4F-10-1A:CMCC-EASY    120.196.100.99    input.shouji.sogou.com    搜索引擎    21    18    9531    2412    200 
13925057413    00-1F-64-E1-E6-9A:CMCC    120.196.100.55    t3.baidu.com    搜索引擎    69    63    11058    48243    200 
13760778710    00-FD-07-A4-7B-08:CMCC    120.196.100.82            2    2    120    120    200 
13560436666    00-FD-07-A4-72-B8:CMCC    120.196.100.82    i02.c.aliimg.com        24    27    2481    24681    200 
13560436666    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            18    15    1116    954    200

输入数据格式:      

1363157993055     13560436666    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99        18    15    1116        954        200 
手机号码                                                                   上行流量    下行流量

 输出数据格式

13560436666     1116              954         2070 
手机号码        上行流量        下行流量        总流量

3)分析

基本思路:

Map阶段:

(1)读取一行数据,切分字段

(2)抽取手机号、上行流量、下行流量

(3)以手机号为key,bean对象为value输出,即context.write(手机号,bean);

Reduce阶段:

(1)累加上行流量和下行流量得到总流量。

(2)实现自定义的bean来封装流量信息,并将bean作为map输出的key来传输

(3)MR程序在处理数据的过程中会对数据排序(map输出的kv对传输到reduce之前,会排序),排序的依据是map输出的key

所以,我们如果要实现自己需要的排序规则,则可以考虑将排序因素放到key中,让key实现接口:WritableComparable。

然后重写key的compareTo方法。

4)编写mapreduce程序

(1)编写流量统计的bean对象

package com.xyg.mr.flowsum; 
import java.io.DataInput; 
import java.io.DataOutput; 
import java.io.IOException; 
import org.apache.hadoop.io.Writable; 
// bean对象要实例化 
public class FlowBean implements Writable { 
private long upFlow; 
private long downFlow; 
private long sumFlow; 
// 反序列化时,需要反射调用空参构造函数,所以必须有 
public FlowBean() { 
super(); 
} 
public FlowBean(long upFlow, long downFlow) { 
super(); 
this.upFlow = upFlow; 
this.downFlow = downFlow; 
this.sumFlow = upFlow + downFlow; 
} 
public long getSumFlow() { 
return sumFlow; 
} 
public void setSumFlow(long sumFlow) { 
this.sumFlow = sumFlow; 
} 
public long getUpFlow() { 
return upFlow; 
} 
public void setUpFlow(long upFlow) { 
this.upFlow = upFlow; 
} 
public long getDownFlow() { 
return downFlow; 
} 
public void setDownFlow(long downFlow) { 
this.downFlow = downFlow; 
} 
/** 
* 序列化方法 
*  
* @param out 
* @throws IOException 
*/ 
@Override 
public void write(DataOutput out) throws IOException { 
out.writeLong(upFlow); 
out.writeLong(downFlow); 
out.writeLong(sumFlow); 
} 
/** 
* 反序列化方法  
注意反序列化的顺序和序列化的顺序完全一致 
*  
* @param in 
* @throws IOException 
*/ 
@Override 
public void readFields(DataInput in) throws IOException { 
upFlow = in.readLong(); 
downFlow = in.readLong(); 
sumFlow = in.readLong(); 
} 
@Override 
public String toString() { 
return upFlow + "/t" + downFlow + "/t" + sumFlow; 
} 
}

(2)编写mapreduce主程序

package com.xyg.mr.flowsum; 
import java.io.IOException; 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.mapreduce.Mapper; 
import org.apache.hadoop.mapreduce.Reducer; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 
public class FlowCount { 
static class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean> { 
@Override 
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { 
// 1 将一行内容转成string 
String ling = value.toString(); 
// 2 切分字段 
String[] fields = ling.split("/t"); 
// 3 取出手机号码 
String phoneNum = fields[1]; 
// 4 取出上行流量和下行流量 
long upFlow = Long.parseLong(fields[fields.length - 3]); 
long downFlow = Long.parseLong(fields[fields.length - 2]); 
// 5 写出数据 
context.write(new Text(phoneNum), new FlowBean(upFlow, downFlow)); 
} 
} 
static class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> { 
@Override 
protected void reduce(Text key, Iterable<FlowBean> values, Context context) 
throws IOException, InterruptedException { 
long sum_upFlow = 0; 
long sum_downFlow = 0; 
// 1 遍历所用bean,将其中的上行流量,下行流量分别累加 
for (FlowBean bean : values) { 
sum_upFlow += bean.getUpFlow(); 
sum_downFlow += bean.getDownFlow(); 
} 
// 2 封装对象 
FlowBean resultBean = new FlowBean(sum_upFlow, sum_downFlow); 
context.write(key, resultBean); 
} 
} 
public static void main(String[] args) throws Exception { 
// 1 获取配置信息,或者job对象实例 
Configuration configuration = new Configuration(); 
Job job = Job.getInstance(configuration); 
// 6 指定本程序的jar包所在的本地路径 
job.setJarByClass(FlowCount.class); 
// 2 指定本业务job要使用的mapper/Reducer业务类 
job.setMapperClass(FlowCountMapper.class); 
job.setReducerClass(FlowCountReducer.class); 
// 3 指定mapper输出数据的kv类型 
job.setMapOutputKeyClass(Text.class); 
job.setMapOutputValueClass(FlowBean.class); 
// 4 指定最终输出的数据的kv类型 
job.setOutputKeyClass(Text.class); 
job.setOutputValueClass(FlowBean.class); 
// 5 指定job的输入原始文件所在目录 
FileInputFormat.setInputPaths(job, new Path(args[0])); 
FileOutputFormat.setOutputPath(job, new Path(args[1])); 
// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行 
boolean result = job.waitForCompletion(true); 
System.exit(result ? 0 : 1); 
} 
}

(3)将程序打成jar包,然后拷贝到hadoop集群中。

(4)启动hadoop集群(3)将程序打成jar包,然后拷贝到hadoop集群中。

(5)执行flowcount程序

[[email protected] ~]$ hadoop jar flowcount.jar com.xyg.mr.flowsum.FlowCount /user/root/flowcount/input/ /user/root/flowcount/output

(6)查看结果

[[email protected] ~]$ hadoop fs -cat /user/root/flowcount/output/part-r-00000

13480253104 FlowBean [upFlow=180, downFlow=180, sumFlow=360]

13502468823 FlowBean [upFlow=7335, downFlow=110349, sumFlow=117684]

13560436666 FlowBean [upFlow=1116, downFlow=954, sumFlow=2070]

13560439658 FlowBean [upFlow=2034, downFlow=5892, sumFlow=7926]

13602846565 FlowBean [upFlow=1938, downFlow=2910, sumFlow=4848]

。。。

7.2.2 需求2:将统计结果按照手机归属地不同省份输出到不同文件中(Partitioner)

0)需求:将统计结果按照手机归属地不同省份输出到不同文件中(分区)

1)数据准备  phone_date.txt

2)分析

(1)Mapreduce中会将map输出的kv对,按照相同key分组,然后分发给不同的reducetask。默认的分发规则为:根据key的hashcode%reducetask数来分发

(2)如果要按照我们自己的需求进行分组,则需要改写数据分发(分组)组件Partitioner

自定义一个CustomPartitioner继承抽象类:Partitioner

(3)在job驱动中,设置自定义partitioner: job.setPartitionerClass(CustomPartitioner.class)

3)在需求1的基础上,增加一个分区类

package com.xyg.mr.partitioner; 
import java.util.HashMap; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Partitioner; 
/** 
* K2 V2 对应的是map输出kv类型 
* @author Administrator 
*/ 
public class ProvincePartitioner extends Partitioner<Text, FlowBean> { 
@Override 
public int getPartition(Text key, FlowBean value, int numPartitions) { 
// 1 获取电话号码的前三位 
String preNum = key.toString().substring(0, 3); 
int partition = 4; 
// 2 判断是哪个省 
if ("136".equals(preNum)) { 
partition = 0; 
}else if ("137".equals(preNum)) { 
partition = 1; 
}else if ("138".equals(preNum)) { 
partition = 2; 
}else if ("139".equals(preNum)) { 
partition = 3; 
} 
return partition; 
} 
}

2)在驱动函数中增加自定义数据分区设置和reduce task设置

public static void main(String[] args) throws Exception { 
// 1 获取配置信息,或者job对象实例 
Configuration configuration = new Configuration(); 
Job job = Job.getInstance(configuration); 
// 6 指定本程序的jar包所在的本地路径 
job.setJarByClass(FlowCount.class); 
// 8 指定自定义数据分区 
job.setPartitionerClass(ProvincePartitioner.class); 
// 9 同时指定相应数量的reduce task 
job.setNumReduceTasks(5);  
// 2 指定本业务job要使用的mapper/Reducer业务类 
job.setMapperClass(FlowCountMapper.class); 
job.setReducerClass(FlowCountReducer.class); 
// 3 指定mapper输出数据的kv类型 
job.setMapOutputKeyClass(Text.class); 
job.setMapOutputValueClass(FlowBean.class); 
// 4 指定最终输出的数据的kv类型 
job.setOutputKeyClass(Text.class); 
job.setOutputValueClass(FlowBean.class); 
// 5 指定job的输入原始文件所在目录 
FileInputFormat.setInputPaths(job, new Path(args[0])); 
FileOutputFormat.setOutputPath(job, new Path(args[1])); 
// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行 
boolean result = job.waitForCompletion(true); 
System.exit(result ? 0 : 1); 
}

3)将程序打成jar包,然后拷贝到hadoop集群中。

4)启动hadoop集群

5)执行flowcountPartitionser程序

[[email protected] ~]$ hadoop jar flowcountPartitionser.jar com.xyg.mr.partitioner.FlowCount /user/root/flowcount/input /user/root/flowcount/output

6)查看结果

[[email protected] ~]]$ hadoop fs -lsr /

/user/root/flowcount/output/part-r-00000

/user/root/flowcount/output/part-r-00001

/user/root/flowcount/output/part-r-00002

/user/root/flowcount/output/part-r-00003

/user/root/flowcount/output/part-r-00004

7.2.3 需求3:将统计结果按照总流量倒序排序(全排序)

0)需求  根据需求1产生的结果再次对总流量进行排序。

1)数据准备      phone_date.txt

2)分析

(1)把程序分两步走,第一步正常统计总流量,第二步再把结果进行排序

(2)context.write(总流量,手机号)

(3)FlowBean实现WritableComparable接口重写compareTo方法

@Override 
public int compareTo(FlowBean o) { 
// 倒序排列,从大到小 
return this.sumFlow > o.getSumFlow() ? -1 : 1; 
}
package com.xyg.mr.sort; 
import java.io.DataInput; 
import java.io.DataOutput; 
import java.io.IOException; 
import org.apache.hadoop.io.WritableComparable; 
public class FlowBean implements WritableComparable<FlowBean> { 
private long upFlow; 
private long downFlow; 
private long sumFlow; 
// 反序列化时,需要反射调用空参构造函数,所以必须有 
public FlowBean() { 
super(); 
} 
public FlowBean(long upFlow, long downFlow) { 
super(); 
this.upFlow = upFlow; 
this.downFlow = downFlow; 
this.sumFlow = upFlow + downFlow; 
} 
public void set(long upFlow, long downFlow) { 
this.upFlow = upFlow; 
this.downFlow = downFlow; 
this.sumFlow = upFlow + downFlow; 
} 
public long getSumFlow() { 
return sumFlow; 
} 
public void setSumFlow(long sumFlow) { 
this.sumFlow = sumFlow; 
} 
public long getUpFlow() { 
return upFlow; 
} 
public void setUpFlow(long upFlow) { 
this.upFlow = upFlow; 
} 
public long getDownFlow() { 
return downFlow; 
} 
public void setDownFlow(long downFlow) { 
this.downFlow = downFlow; 
} 
/** 
* 序列化方法 
* @param out 
* @throws IOException 
*/ 
@Override 
public void write(DataOutput out) throws IOException { 
out.writeLong(upFlow); 
out.writeLong(downFlow); 
out.writeLong(sumFlow); 
} 
/** 
* 反序列化方法 注意反序列化的顺序和序列化的顺序完全一致 
* @param in 
* @throws IOException 
*/ 
@Override 
public void readFields(DataInput in) throws IOException { 
upFlow = in.readLong(); 
downFlow = in.readLong(); 
sumFlow = in.readLong(); 
} 
@Override 
public String toString() { 
return upFlow + "/t" + downFlow + "/t" + sumFlow; 
} 
@Override 
public int compareTo(FlowBean o) { 
// 倒序排列,从大到小 
return this.sumFlow > o.getSumFlow() ? -1 : 1; 
} 
}

4)Map方法优化为一个对象,reduce方法则直接输出结果即可,驱动函数根据输入输出重写配置即可。3)FlowBean对象在在需求1基础上增加了比较功能

package com.xyg.mr.sort; 
import java.io.IOException; 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.mapreduce.Mapper; 
import org.apache.hadoop.mapreduce.Reducer; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 
public class FlowCountSort { 
static class FlowCountSortMapper extends Mapper<LongWritable, Text, FlowBean, Text>{ 
FlowBean bean = new FlowBean(); 
Text v = new Text(); 
@Override 
protected void map(LongWritable key, Text value, Context context) 
throws IOException, InterruptedException { 
// 1 拿到的是上一个统计程序输出的结果,已经是各手机号的总流量信息 
String line = value.toString(); 
// 2 截取字符串并获取电话号、上行流量、下行流量 
String[] fields = line.split("/t"); 
String phoneNbr = fields[0]; 
long upFlow = Long.parseLong(fields[1]); 
long downFlow = Long.parseLong(fields[2]); 
// 3 封装对象 
bean.set(upFlow, downFlow); 
v.set(phoneNbr); 
// 4 输出 
            context.write(bean, v); 
} 
} 
static class FlowCountSortReducer extends Reducer<FlowBean, Text, Text, FlowBean>{ 
@Override 
protected void reduce(FlowBean bean, Iterable<Text> values, Context context) 
throws IOException, InterruptedException { 
context.write(values.iterator().next(), bean); 
} 
} 
public static void main(String[] args) throws Exception { 
// 1 获取配置信息,或者job对象实例 
Configuration configuration = new Configuration(); 
Job job = Job.getInstance(configuration); 
// 6 指定本程序的jar包所在的本地路径 
job.setJarByClass(FlowCountSort.class); 
// 2 指定本业务job要使用的mapper/Reducer业务类 
job.setMapperClass(FlowCountSortMapper.class); 
job.setReducerClass(FlowCountSortReducer.class); 
// 3 指定mapper输出数据的kv类型 
job.setMapOutputKeyClass(FlowBean.class); 
job.setMapOutputValueClass(Text.class); 
// 4 指定最终输出的数据的kv类型 
job.setOutputKeyClass(Text.class); 
job.setOutputValueClass(FlowBean.class); 
// 5 指定job的输入原始文件所在目录 
FileInputFormat.setInputPaths(job, new Path(args[0])); 
Path outPath = new Path(args[1]); 
//        FileSystem fs = FileSystem.get(configuration); 
//        if (fs.exists(outPath)) { 
//            fs.delete(outPath, true); 
//        } 
        FileOutputFormat.setOutputPath(job, outPath); 
// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行 
boolean result = job.waitForCompletion(true); 
System.exit(result ? 0 : 1); 
} 
}

5)将程序打成jar包,然后拷贝到hadoop集群中。

6)启动hadoop集群5)将程序打成jar包,然后拷贝到hadoop集群中。

7)执行flowcountsort程序

[[email protected] module]$ hadoop jar flowcountsort.jar com.xyg.mr.sort.FlowCountSort /user/root/flowcount/output /user/root/flowcount/output_sort

8)查看结果

[[email protected] module]$ hadoop fs -cat /user/flowcount/output_sort/part-r-00000

13502468823 7335 110349 117684

13925057413 11058 48243 59301

13726238888 2481 24681 27162

13726230503 2481 24681 27162

18320173382 9531 2412 11943

7.2.4 需求4:不同省份输出文件内部排序(部分排序)

1)需求   要求每个省份手机号输出的文件中按照总流量内部排序。

2)分析   基于需求3,增加自定义分区类即可。

3)案例实操

(1)增加自定义分区类

package com.xyg.reduce.flowsort; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Partitioner; 
public class FlowSortPartitioner extends Partitioner<FlowBean, Text> { 
@Override 
public int getPartition(FlowBean key, Text value, int numPartitions) { 
int partition = 0; 
String preNum = value.toString().substring(0, 3); 
if (" ".equals(preNum)) { 
partition = 5; 
} else { 
if ("136".equals(preNum)) { 
partition = 1; 
} else if ("137".equals(preNum)) { 
partition = 2; 
} else if ("138".equals(preNum)) { 
partition = 3; 
} else if ("139".equals(preNum)) { 
partition = 4; 
} 
} 
return partition; 
} 
}

(2)在驱动类中添加分区类

job.setPartitionerClass(FlowSortPartitioner.class); 
job.setNumReduceTasks(5);

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/9437.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论